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Abstract

Designing and debugging digital hardware has traditionally used vendor-provided
tools, which are large and platform-constrained. Designers expend considerable effort
accommodating toolchains for Field Programmable Gate Array (FPGA) development,
which include utilities for debugging logic on the FPGA itself. As an alternative, this
work proposes Manta, a lightweight, modular, platform-independent, and intuitive
tool for debugging digital logic on FPGAs. Manta is designed to supplement ven-
dor tools, and includes a logic analyzer, block memory interface, and the ability to
measure and control individual signals on the FPGA. These tools are shown to build
faster and consume fewer on-chip resources than equivalent vendor offerings, without
any restrictions on chip family or vendor. Ethernet and UART interfaces provide
convenient and high bandwidth communication between the host machine and target
FPGA, and an extensible Python API allows for easy development of custom applica-
tions. This complete system produces an accessible and equitable FPGA development
experience for use in educational, professional, and hobbyist environments alike.

Thesis Supervisor: Joseph D. Steinmeyer
Title: Senior Lecturer
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Chapter 1

Introduction

1.1 Motivation

MIT’s Digital Systems Laboratory (6.205/6.111) course has long been a staple of the

Institute’s undergraduate electrical engineering curriculum since its introduction in

1968 as 6.711.[24] In the course, students build intuition for digital logic through

guided laboratory exercises for the first half of the semester, before implementing a

final project of their own design in the latter half.

The course underwent major restructurings in the late 1980s and early 2000s.

Prior to then, the digital logic in lab exercises and final projects was implemented

with discrete integrated circuits (ICs) assembled on a breadboard. This suited the

class well as it reflected the way nearly all digital logic was designed at the time,

but the growing adoption of programmable logic in industry prompted the course

to be rewritten in the late 1980s. The new course targeted Programmable Array

Logic (PAL) devices, until the course was rewritten again for more modern Field-

Programmable Gate Arrays (FPGAs) in 2002.

The transition to programmable logic was an excellent change for the course.

Logic was specified with source code, which was easier to inspect, debug, modify, and

maintain than a bundle of jumper wires on a breadboard. This allowed for greater

attention to be placed on learning and using the design principles taught in the course

- and less on exorcising any loose wires before a lab checkoff.
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However, this required the usage of proprietary EDA tools from chip vendors

to implement the desired digital logic, which in the case of the FPGAs presently

used, is Xilinx. These tools were run on dedicated machines in the lab, and were

responsible for putting students’ logic on their FPGAs, carrying their designs through

synthesis, elaboration, implementation, placement, and routing. These processes were

time-consuming, and the tools to perform them were bulky, platform-dependent, and

offered an unintuitive user interface. Despite this, patiently waiting for a build to

finish was greatly preferable to fiercely debugging a discrete implementation on a

breadboard. A clunky tool was a small price to pay for the magic of programmable

logic.

Fast-forwarding to the present day, the clunkiness of these tools has now become

a distraction from the pedagogical goals of the course - much like hunting down

loose wires was twenty years ago. The current iteration of Xilinx’s design tools (now

called Vivado) are still bulky and platform-constrained. Vivado’s binaries exceed

100GB in size once installed, and only support Windows and Linux hosts with x86

processors. This leaves the toolchain inaccessible to students with either MacOS

devices or low-spec machines. Historically the course has mitigated this by providing

virtual machines for MacOS users, and dedicated machines in lab for students without

the disk space to spare.

Neither of these solutions are convenient, or provide an experience equal to hav-

ing the tools natively installed. The inequitably reduces the educational experience

for those without the right hardware, a problem that the rising popularity of ARM

processors has exacerbated. Students who own Macintoshes with Apple Silicon would

need to create both a virtualized and emulated environment for over 100GB of EDA

tools. Including this many compatibility layers does not produce a usable experience

on anything but the highest-end Apple Silicon.

In response, at the beginning of the Fall 2022 semester the course staff repurposed

the fleet of dedicated machines in lab into a distributed build system. Each machine

became a worker in the pool, with its own set of native Vivado binaries installed.

Students were provided a script (called lab-bc) that copied their source code to a
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worker over SSH, built their code, and sent back a bitstream. This script was written

in Python, enabling any machine with a SSH client and Python interpreter to become

suitable for FPGA development.

The particular implementation was not perfect - it left some robustness and secu-

rity to be desired - but it worked beautifully. Students with computing environments

not natively supported by Vivado were able to make significant progress on their

projects outside of lab. In the opinion of the course staff, this was responsible for a

noticeable improvement in the quality of student projects.

Although most development work was done in simulation or with lab-bc, most

projects at some point required the use of debugging tools only available through a

native install of Vivado. Student designs would work flawlessly in simulation, but

failed when flashed to a FPGA. To give a few examples from the Fall 2022 semester:

• A Reduced Media-Independent Interface (RMII) Ethernet controller that would

place 𝑁 bytes of data on the wire, only to have 𝑁 + 1 bytes of data arrive on

the receiving device.

• A Secure Digital (SD) Card controller that would request to read a 512-byte

block from a microSD card, only to have the read buffer hang while servicing

the request.

• A Xilinx-provided Double Data Rate (DDR) memory controller that would

never finish initializing the Dynamic Random-Access Memory (DRAM) con-

nected to the FGPA.

These issues were debugged with Vivado’s Integrated Logic Analyzer (ILA) and

Virtual IO (VIO) utilities. Both require a native Vivado install on the development

machine - making them fundamentally incompatible with lab-bc. As a result, most

students were back to using dedicated lab machines by the end of the semester,

negating the pedagogical benefits of lab-bc.

In addition to being inconvenient and unequitable, debugging with an ILA or

VIO on a dedicated lab machine was an overwhelming experience for most 6.205
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students. Bringing up an ILA or VIO was only necessary during the latter half of the

course, where students were working on their own projects. At this point, students

were comfortable with a FPGA development workflow consisting of their preferred

text editor, and a few staff-provided scripts for simulation, build, and upload. This

meant that the process of opening Vivado’s GUI, importing source code, navigating

the IP configuration, and using the ILA and VIO was a completely new process, and

students often became completely lost in it - even with a member of the course staff

walking them through it. This consequence is particularly undesirable, as students

resorting to an ILA or VIO had usually expended considerable effort debugging their

design any other way they could, meaning most of their energy had been expended

by the time they began debugging. This left little room for discussions of how to

fix whatever issues were discovered, or creating a lasting understanding of how to

use the debugging tools in the future. In short, using the vendor-provided tools

exhausted whatever energy the students had, making the experience of developing

their hardware exhausting, not enlightening.

Given the pedagogical benefits provided by equitable access to EDA tools via a

cross-platform build client, it is believed that a cross-platform debugging utility would

further increase the educational value of the course and provide a more equitable and

enlightening learning experience for all.

The development of such a tool is the objective of this thesis.
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1.2 Proposed Solution

Figure 1-1: The Manta logo. Canonically, the manta ray depicted is named Raymond,
for obvious reasons.

This thesis proposes Manta, an in-situ tool for debugging programmable hardware,

as sufficient for meeting the pedagogical needs of the course. Fundamentally, its goals

are:

• To debug user-designed logic in a manner familiar, intuitive, and useful to both

experienced hardware engineers as well as 6.205 students and staff.

• To be as simple as possible, both in user interface and system architecture.

Using the tool should place as little cognitive load on the user as possible.

• To complement the vendor-provided debugging tools currently used. Manta

should require fewer FPGA resources, build faster, and provide bandwidth

equivalent to or greater than vendor tools.

• To provide a convenient Python interface to the debug cores once flashed to a

FPGA, such that interacting with a vendor-provided Tcl console is not neces-

sary.

• To be platform-agnostic, both to the host machine and the target FPGA. It

should function identically regardless of host operating system and processor

architecture, or FPGA vendor and family.
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• To produce human-readable Verilog-2001 similar to what one would expect a

human engineer to write, at a level understandable by the average 6.205 student.

While users should never need to modify the source, this choice gives users a

transparent view of the hardware placed on their FPGAs.

• To have no dependency on vendor-provided software, outside of that strictly

necessary for building Hardware Description Language (HDL) source code to a

bitstream. Dependencies on other external software should be used sparingly,

and be made optional if possible.

Manta is named such because manta rays are an endangered and fragile species

that should be loved, cherished, and protected, just like good hardware design. The

name is also a nod to Mr. Ray, the jolly science teacher in Finding Nemo, whose

enthusiasm towards teaching is fondly admired by the author of this text. His ability

to transport fish to school on his back is also similar to Manta’s ability to shuffle data

on its bus.
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Chapter 2

Related Work

2.1 Vendor Tools

Most FPGA designs are developed inside a vendor-provided environment, and as

such the debugging tools included in the environment are those most often used. For

designs utilizing Xilinx FPGAs with Vivado, this primarily consists of the Virtual

IO Core and the Integrated Logic Analyzer. Other debugging tools are provided by

Vivado, but these two cover nearly every use case encountered in 6.205.

2.1.1 Integrated Logic Analyzer

The ILA is by far the most commonly used tool in 6.205. The ILA functions much

like a benchtop logic analyzer, with a set of probes connected to some logic under

test. When a trigger condition is met, the ILA records the state of the probes on

each clock cycle. This continues for some predefined number of clock cycles, and

once complete, the captured data is sent back to the host machine and presented as

a digital waveform. This tool exists as digital logic flashed on the FPGA along with

a graphical interface in Vivado, and thus requires no external equipment.

For modest configurations, Integrated Logic Analyzer follows the same workflow

as other Intellectual Property (IP) blocks in Vivado. The IP customizer is used to

configure the ILA, setting the number and width of ports, the number of samples to
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Figure 2-1: Waveform display of data captured by an ILA.

capture, and how many trigger conditions to evaluate. This is then used by Vivado

to prepare a synthesized netlist - not source code. The source code used for synthesis

is generated internally by Vivado from encrypted sources, and is never exposed to

the user. A similar process occurs through the Tcl console for ILAs requiring a larger

number of probes, or wider probe widths. This process targets post-synthesized

designs, which complicates the build process.

Once flashed to the FPGA, this tool allows hardware designers to inspect the state

of any net on the FPGA in pseudo-realtime. This ability has proven remarkably useful

in 6.205, where student designs often work perfectly well in simulation, but fail when

put into hardware. This is usually due to some difference between the test conditions

provided in the simulation and the conditions provided by the real world. The ILA

allows designers to debug their designs by playing spot-the-difference between the

inputs provided to their devices in simulation, and the inputs provided to them in

the real world.

This is most commonly seen when external devices need to be modeled - for

example, it’s nearly impossible to debug an I2S interface that works in simulation,

but fails in hardware without an ILA. The simulation will only be able to predict the
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behavior of the user’s logic as long as the inputs are cycle-accurate. This is a tall

order for students in a semester-long laboratory course that are learning digital logic

fundamentals, languages, protocols, and toolchains all at the same time. As a result,

the existence of the ILA is critical for fulfilling the present pedagogical goals of the

course.

2.1.2 Virtual IO

Virtual IO behaves much like the name implies. It allows the user to define a set

of signals on the FPGA whose state can be queried (in the case of an input port),

or controlled (in the case of an output port). It does this in a workflow similar to

the ILA, using Vivado’s IP workflow to generate a synthesized netlist. This is then

included in the user’s design, and flashed on the FPGA. Once placed on the chip,

the VIO core communicates with the host over the interface specified by the Joint

Test Action Group (JTAG), setting the values of output probes reporting the values

of input probes in response to communication from the host. This is done through

Vivado’s GUI or Tcl console.[17] [13]

Figure 2-2: Xilinx Virtual IO (VIO) User Interface.[17]
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Figure 2-3: Xilinx Virtual IO Hardware Block Diagram.[13]

2.1.3 ChipScoPy

Xilinx also provides a less well-known interface to their debug cores called ChipScoPy.

This exposes a Python Application Programming Interface (API) to debug cores on

Xilinx Versal System-on-Chips (SoCs). These SoCs contain fixed-function silicon

for debugging high-speed logic like DDR Memory, Gigabit network transceivers, and

PCI Express busses, to which ChipScoPy can interface. It can also interface with

debug cores implemented in programmable logic (such as the ILA and VIO cores),

providing a Python API that exposes the same functionality present in Vivado’s

graphical interface. In the case of an ILA, the Python API can set trigger conditions,

run the core, and export the acquired data as a waveform. In the case of a VIO core,

the API can query the state of input probes, and set the state of output probes. This

provides an interface that’s more user-friendly and extensible than the Tcl scripting

capabilities available in Vivado.[19] [15]

2.1.4 Signal Tap

Intel provides their own analogues to the ILA and VIO cores in the form of Signal Tap

and In-System Sources and Probes (ISSP). Both are accessible only through Intel’s

FPGA development environment, Quartus Prime. These tools are largely equivalent
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to their Xilinx counterparts, as they exist in the programmable logic of the FPGA,

communicate with the host machine over JTAG, and do not expose the underlying

HDL source. A programmable interface to these commands only exists via a Tcl

scripting environment.

Figure 2-4: Waveform display of data captured by Signal Tap. [4]

Intel’s Signal Tap is functionally equivalent to the Xilinx ILA, with a two notable

extra features. First, a small scripting language is provided for specifying what Intel

refers to as a Trigger Flow. This is a set of trigger conditions that are evaluated

sequentially, such that when one condition is met the data is captured to a buffer, and

depending on which condition was met, a new trigger condition is selected. This allows

multiple trigger conditions to be cascaded through a user-defined state machine, with

the state of the FPGA at each to be observed at each. As the scripting language

is used only for specifying state machines, it implements few features other than

conditional logic. [2] [3].
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Second, Signal Tap contains a feature Intel refers to as Simulation-Aware nodes,

which place capture data from a Signal Tap instance inside a simulation. This allows

for running simulations on user-specified logic with data acquired from the real world.

Naturally, this only supports the simulator included with Quartus Prime, Questa. At

the time of writing, this feature is only out of beta in the most recent release of the

full-featured version of Quartus Prime, Quartus Prime Pro Edition 22.4.[1]

2.1.5 In-System Sources and Probes

Intel’s In-System Sources and Probes (ISSP) tool is the Intel equivalent to Xilinx’s

Virtual IO core. Signals being controlled by the host machine are referred to as

sources, and signals driven by the FPGA are referred to as probes. These are observed

and controlled through the Quartus GUI. The primary difference between ISSP and

Xilinx’s VIO is ISSP’s inclusion of a waveform viewer. This shows a rolling history

of any configured probes, albeit limited by the bandwidth of the FPGA’s JTAG

interface. No rolling waveform is provided for configured sources, only probes.

Figure 2-5: User interface to In-System Sources and Probes in Quartus.[4]

22



2.2 Commercial Offerings

Although the most commonly used closed-source debuggers are those provided by

the vendor, one commercial tool deserves mention. While not directly marketed as a

debugger, Opal Kelly’s FrontPanel Software Development Kit (SDK) can be used as

such. FrontPanel is designed to a provide a host computer with a real time interface

to FGPA signals, and present them on a graphical “front panel". These front panels

present themselves as a GUI window, and contain buttons, knobs, and indicators,

mimicking those found on the front panels of benchtop electrical test equipment,

hence the products name. These have a look and feel very similar to the front panels

used on LabVIEW virtual instruments, but the underlying API is exposed to the

user. Bindings for hosts running Windows, macOS, and Linux are provided, and

target C, C++, C#, Python, Java, Ruby, and MATLAB. Communication between

the host machine and target FPGA is done over either the Universal Serial Bus (USB)

or Peripheral Component Interconnect Express (PCIe). On the FGPA side, the user

is given a skeleton module with defined inputs and outputs, into which their HDL

must fit. The user logic fits into this block, and is instantiated by the FrontPanel

SDK which manages the entire module hierarchy.[12]

The FrontPanel SDK is best understood as a faster, cross-platform version of the

Xilinx VIO core that uses USB and PCIe instead of JTAG, and includes an API like

ChipScoPy by default. The only interface to user HDL is through the endpoints, and

it does not include a logic analyzer.

2.3 Open Source Offerings

Several scripts exist on GitHub that provide similar functionality to the tools listed

above.[11] [5] [25] These appear to function either by implementing logic analyzers

in HDL from scratch, or by reverse-engineering output data from the vendor tools.

None appear to have a significant user base, or much accompanying documentation.

However, one open-source system deserves mention. Dan Gisselquist has created
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Figure 2-6: System architecture of Opal Kelly’s FrontPanel SDK.[12]

an open-source bus-based debugger called dbgbus, which provides a C++ API on the

host side, and a Wishbone bus interface on the FGPA side [9] [7] [10] [6]. The debug-

ger itself exposes only a Wishbone bus controller to the user logic, which connects

separately to other Wishbone-based debugging tools. These include user registers,

block RAM, and a Wishbone scope. The registers and scope function similarly to the

Xilinx VIO core and ILA respectively.

The debugging tools are provided as Verilog and C++ source only, so configuring

the debugger consists of modifying them directly. In the case of the Wishbone scope,

the FPGA side is configured by assigning the desired signals to a register in the scope

definition, and the host machine side is set up by subclassing a C++ template class.

Once both ends have been built and run, the resulting capture data is exported as a

VCD file to be opened in an external waveform viewer such as GTKWave.
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Figure 2-7: System architecture of dbgbus, at both the system level and FPGA-level.
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Chapter 3

Design

3.1 Overview

Manta is packaged as a Python wheel, available through the Python Package Index

(PyPI) and its frontend pip. The package performs two primary functions: proce-

durally generating synthesizable Verilog-2001 to be flashed to the FPGA, and com-

municating with the logic over UART or Ethernet once flashed. Both functions are

performed in Python, which also provides an API for users to access in their own

applications.

Using Manta requires a hardware setup like that shown in Figure 3-1. The host

machine is connected to a FPGA development board with either a USB or Ethernet

cable, over which communication takes place. The host accomplishes this communi-

cation through either a USB controller or Network Interface Controller (NIC), which

the operating system provides a device driver for. These device drivers function

differently between hosts running Windows or Portable Operating System Interface

(POSIX)-compatible operating systems. To accommodate this, an interface API is

used to abstract away platform-specific behavior and provide a single Python in-

terface for device communication. Manta itself uses this to send UART bytes or

Ethernet packets to the FPGA, but it also exposes a high-level Python API that may

be used in custom applications written by the user. Taken together, the components

of this stack provide a user-extensible API for communicating with the FPGA across
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multiple operating systems and interfaces.

Figure 3-1: Block diagram of Manta.

Communications sent by the host are carried across the cable to the FPGA devel-

opment board. There they are handled by an interface transceiver, an IC that converts

the signals on the line to something interpretable by the FPGA. When UART is used,

this transceiver is the FGPA development board’s USB/UART converter, which pro-

vides the tx and rx signals to the FPGA. When Ethernet is used, this transceiver

is the development board’s Ethernet PHY, which provides a Media-Independent In-

terface (MII) to the FPGA. The transceiver’s output is connected through an IO pin

to the FPGA’s fabric, where the hardware design specified by the user’s HDL is im-
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plemented. By including the Verilog generated by Manta in this HDL, the cores are

implemented in the FGPA fabric. There, it exposes the user’s logic to the host ma-

chine through the provided interface signals. This is accomplished by daisy-chaining

the cores across an internal bus, and is described in Section 3.1.3.

3.1.1 Usage

Once the connection between the host machine and development board has been

made, using Manta consists of the following:

• The user specifies a set of debug cores they wish to include in their design. This

is represented as a configuration file, formatted as either JavaScript Object

Notation (JSON) or Yet Another Markup Language (YAML). Both are human-

readable and can be quickly written and modified, but the latter is preferred

for its more minimal syntax. An example configuration, specified as YAML, is

presented in Figure 3-2.

• The user invokes Manta to generate Verilog-2001 source code from the con-

figuration provided. This is done via Manta’s command line interface, which

generates a single .v file containing a complete definition for a Verilog module

named manta. This file is generated from a set of Verilog templates stored in the

Python package, which are modified and combined to produce RTL matching

the configuration specified by the user.

• The user instantiates manta in their design, and connects it to the logic they

wish to debug. The user must also connect manta to the interface transceiver via

the IO pins on the FPGA. This permits communication with the host machine.

• The user builds the design with a tool of their choice, and uploads it to the

FPGA. Manta is designed to support as many toolchains as possible, and does

not use any vendor, toolchain, or chip-specific features. Manta also exports only

Verilog-2001, allowing it to maintain compatibility with most FPGA toolchains
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released in the last twenty years, and avoid SystemVerilog’s inconsistent inter-

pretation across EDA tools. This allows for its use by maintainers of legacy

systems, or budget-constrained educators using older FPGAs.

• The user then operates the debug core(s). Each core has a unique set of opera-

tions available, which can be performed either through the Python API, or the

command line (which merely provides a convenient wrapper for the API). The

exact syntax is provided in the API documentation, but users can capture data

from a Logic Analyzer core, set and measure probes on an IO core, and read

and write to a Block Memory core.

• Once the user has identified a bug or wishes to update their logic, they repeat

this process. No changes are required to the configuration file or the generated

Verilog, unless the user wishes to modify the debug cores placed on the device.

This is continued until the user’s design is functioning as intended.

3.1.2 Dependencies

Manta depends on a few pieces of external software. Some are only required when

developing the package, while others are required while using it. The latter category

consists of a handful of Python modules, including:

• pyYAML, which is used for parsing configuration files written in YAML.

• pySerial, used for communicating with the FPGA over UART.

• Scapy, used for communicating with FPGA over Ethernet.

• pyVCD, used for writing waveforms captured by the Logic Analyzer Core to

standard Value Change Dump (VCD) files.

All of these dependencies are technically optional. A user comfortable writing

configurating files as JSON does not need pyYAML, and a user using exclusively

UART for communication does not need Scapy. However, Manta will try to install
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---
cores:

my_io_core:
type: io

inputs:
probe_0_in: 6
probe_1_in: 12

outputs:
probe_2_out: 20
probe_3_out: 1

uart:
port: "auto"
baudrate: 3000000
clock_freq: 100000000

Figure 3-2: Example Manta configuration file. Here, an IO core with two input and
two output probes is specified. These probes have widths of 6, 12, 20, and 1 bit
respectively. The FPGA communicates with the host over an autodetected serial
port running at 3Mbps, while the FPGA itself is clocked at 100MHz.

(or use an existing copy of) pyYAML, pySerial, and pyVCD during its own installation

to cover most use cases.

Aside from the dependencies required to use Manta, a few dependencies are re-

quired to develop it. The package itself is built with Python’s setuptools, and uses

Black for linting it’s Python source. Verilator is used for linting the Verilog templates,

which are functionally tested in Icarus Verilog. This testing is performed automat-

ically in a CI/CD pipeline created in GitHub Actions, which also builds example

designs for the Nexys A7 and iCEstick. This is done with Vivado and the open-

source iCE40 toolchain (Yosys/nextpnr/icepack) respectively.

Lastly, the most up to date documentation and exact usage instructions are hosted

at manta.mit.edu, which is generated with Material for MkDocs.
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3.1.3 System Architecture

The logic Mantas places on the FPGA consists of a series of modules connected in

a chain along a common bus, as shown in Figure 3-3. Each module, called a core,

provides a unique method for interacting with the user’s logic, and as such the means

by which the connection is handled varies per core. However, these connections are

made by routing signals, called probes, between the user’s logic and the cores that

interface with it.

Figure 3-3: Functional block diagram of the logic Manta places on the FPGA.
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These probes are then presented as addressable memory, and may be interacted

with by reading and writing to them - not unlike registers on a microcontroller. Each

core is allotted a section of address space at compile time, and operations addressed

to a core’s address space control the behavior of the core. These cores are then daisy-

chained along an internal bus, which permits a chain arbitrarily many cores to be

placed on the bus.

At the beginning of this chain is a module called a receive bridge, which converts

incoming UART/Ethernet communication from the host into read and write requests,

which are placed on the bus. These are called bus transactions, and once placed on

the bus, they travel through each core before reaching the transmit bridge at the

end of the chain. This module places the result of the bus transaction back on the

UART/Ethernet interface, and sends it back to the host. This produces a request-

response style of communication between the host machine and the FPGA.

Manta’s architecture can be described as a set of probes connected to the user’s

logic, which are mapped to memory through a set of cores, all daisy-chained along an

internal bus that provides responses to requests from the host. The design of these

constituent elements - the bus, interfaces, and cores - is the subject of the remainder

of this chapter.
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3.2 Data Bus

3.2.1 Description

The data bus is designed for simplicity, and consists of five signals used to perform

reads and writes on memory:

• addr [15:0], indicating the memory address targeted by the current transac-

tion.

• rdata [15:0], containing the result of a read from memory.

• wdata [15:0], containing data to be written to memory.

• rw, indicating a read or write transaction if the signal is low or high respectively.

• valid, which is driven high only when the operation specified by the other

signals is to be executed.

Each core has a bus input and output port, which permits daisy-chaining by

connecting the output of one core to the input of another. Upon receiving an incoming

bus transaction, the core checks the address present on the wire against its own

memory space. If the address lies within the core, the core will perform the requested

operation, writing the data at the address to rdata, or writing the data on wdata

to the address. However, if the address lies outside of the memory of the core, then

the transaction is copied from the input port to the output port, and simply passes

through the core. This is shown in Figures 3-4 and 3-5 for a read and write transaction,

respectively.
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Figure 3-4: Waveform diagram of a read transaction on the bus.

Figure 3-5: Waveform diagram of a write transaction on the bus.
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3.2.2 Functional Simplicity

The design of this bus is intentionally very simplistic. This is done by applying two

principles already present in the design:

• All external logic is separated from Manta’s internals. Originally, using a “brand

name” bus such as Wishbone, Avalon, or AXI was considered. This had the

advantage that it would simplify interfacing to IP in user logic that used the

same bus - at the expense of making it more difficult to interface to IP on

any other bus. This conflicts with the design goals of simplicity and platform-

agnosticism: AXI is popular amongst Xilinx IP, Avalon is used by Intel’s IP,

and Wishbone is preferred by some in the open-source hardware community.

Choosing one meant alienating the others, which was unacceptable.

Instead, it was chosen to separate Manta’s internal bus from user logic, isolating

it from any IP. The connection between user logic and the internal bus is not di-

rect, and is moderated by the cores. This allows for greater safety and flexibility

when interacting with logic that is, by nature, not behaving as expected.

This puts Manta at an advantage against bus-based debuggers, like the open-

source Wishbone-based offering provided by Gisselquist [6]. A general set of

cores can connect to anything, regardless of if it has a Wishbone bus.

By offering a set of cores that provide a general connection to user-provided

logic, they can connect to anything, regardless of if it has a Wishbone bus. This

design choice also prevents the user logic from interfering with the debugging

tools. In the case of the Gisselquist debugger, the user-provided logic could very

easily create a deadlock condition on the bus, preventing any data from being

transferred back to the host machine, and disabling the debugger.

Additionally, connecting to user logic through cores provides a very natural

point to perform clock domain crossing (CDC). Cores execute reads and writes

on the bus clock, but connect to user logic on its native clock domain. The

means by which this is accomplished depends on the core. Cores utilizing block
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memory will use a dual-port, dual-clock Block RAM to perform CDC, but those

without it use a two flip-flop synchronizer.

• Cores do not need to communicate amongst themselves. This frees them from

managing their own data transfers, and allows the bus to lack provisions for

handling them. Bus transactions are initiated by the receive bridge, travel

through the daisy-chained cores, and exit the transmit bridge. Cores have no

knowledge that other cores exist, and only concern themselves with memory

operations on their own address space.

Combined, these two assumptions allow for a bus design that is stateless, which

simplifies design considerably. Any cores attached to the bus are only concerned with

handling the present transaction, which allows Manta’s bus to omit features found in

brand name busses, such as:

• Notion of controllers or peripherals.

• Ready flags. The concept of backpressure does not exist in this bus design.

• Separate read and write channels. Even though the bus contains wdata and

rdata, data flows in a single direction across the chain.

• Transaction privileges, burst modes, or strobe signals, secondary tag busses, or

any other metadata.

3.2.3 Routing

In addition to its simplicity and extensibility, this bus design was chosen for its flex-

ibility during routing. Routing is the last step in building HDL source code to an

uploadable bitstream, and consists of routing the connections between primitives on

the FPGA fabric. During this process, the EDA tools continuously evaluate tim-

ing constraints to ensure signals have fully propagated before the next clock edge,

preventing metastability.
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For some designs, satisfying these constraints is very difficult. Large designs that

use significant resources spread their logic across the FPGA fabric, as do designs that

incorporate multiple clock domains. This presents a large distance over which the

signal must propagate within a single clock cycle. Designs using fast clocks reduce

the amount of time available for signals to propagate, decreasing the distance they

can travel on the FPGA.

One of Manta’s core design goals is to place as little cognitive load on the user

as possible. For users designing routing-constrained logic, this means using Manta

should not force any reconsideration of on-chip routing, or restructuring of onboard

clock domains. The internal bus provided by Manta accomplishes this by allowing

registers to be added in series with the bus connection between each module. Adding

registers eases the burden on the routing engine, as bus signals need only to reach

the next register in a single clock cycle, not the next core. An arbitrary number of

registers can be included, allowing the internal bus to reach any location on the chip.

This is illustrated in Figure 3-6.

Figure 3-6: Bird’s-eye view of the logic placed on an FPGA fabric, where each colored
square represents a clock domain. On the left is a user design spanning multiple clock
domains, to which Manta is added in the center figure. This creates long paths for
the bus to travel, highlighted in red. Adding registers allows the design to satisfy
timing constraints, and is shown on the right.

This does add a few clock cycles of latency between adjacent cores, however this

does not affect the system’s operation. Cores do not perceive this latency as they

do not communicate amongst themselves, so this latency is only perceptible by the

host machine, which receives responses to its request slightly later. For typical FPGA

37



designs in the hundreds of megahertz, this equates to a delay of a few tens of nanosec-

onds. This is far less than the rate at which the host’s operating system flushes the

read buffer of whatever interface it uses to communicate with the FPGA, and is

therefore imperceptible to the host machine.

Lastly, it is worth noting that this daisy-chained, memory-mapped bus architec-

ture takes strong inspiration from JTAG, the debugging interface of choice for the

other kind of programmable logic - microcontrollers. Since the 1990s, JTAG has been

commonly used to test microcontrollers during manufacturing, and debug them dur-

ing development. This requires interacting with multiple sections of silicon scattered

across the chip, which poses a similar routing problem. JTAG solves this by also

using a daisy-chained bus, which can be routed over an arbitrary length on the chip.

Despite its extremely widespread usage and routing flexibility, JTAG itself was not

used as it not common for FPGAs to expose their JTAG controller to user logic. The

behavior of these controllers is also very device-dependent, so foregoing JTAG allows

for easier platform-agnosticism.

3.3 UART Interface

3.3.1 Description

The UART interface allows for arbitrary bytes to be sent to and from the FPGA.

However, Manta’s internal bus uses 16-bit address and data words, meaning multiple

bytes must be used to communicate a bus transaction. This is done by adopting a

standardized message format, which varies depending on if the message specifies a

read or a write, or if the message is a request from the host or a response from the

FPGA. These four formats are shown in Figure 3-7.

Each of these messages is a string of ASCII characters, consisting of a preamble,

optional address and data fields, and an End of Line (EOL). The preamble consists

of the letter M, and the address field encodes the address of the bus transaction as

hexadecimal digits. This uses characters representing numbers 0-9 and letters A-F,
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Figure 3-7: Format of read and write requests and responses

Sequence Number UART Activity Operation

1 Host → FPGA: M1234(CR)(LF) -
2 FPGA → Host: M5678(CR)(LF) Read 0x5678 from 0x1234
3 Host → FPGA: MF00DBEEF(CR)(LF) Write 0xBEEF to 0xF00D
4 Host → FPGA: MF00D(CR)(LF) -
5 FPGA → Host: MBEEF(CR)(LF) Read 0xBEEF from 0xF00D
6 Host → FPGA: M12340000(CR)(LF) Write 0x0000 to 0x1234

Table 3.1: Example UART traffic for memory reads and writes.

which requires four characters to represent the 16-bit address word. If the transaction

is a write request, then it will contain a data field after the address field, which is

represented in exactly the same manner. Both request types will conclude with an

End of Line, which consists of the two ASCII characters indicating a Carriage Return

(CR) and a Line Feed (LF).

These requests are sent by the host machine to the FPGA, which reads them

from the rx line on the interface transceiver. This is handled by the receive bridge,

which parses incoming messages, and generates bus transactions from them. Once

39



this transaction runs through every core in the chain, it arrives at the transmit bridge,

which may send a response back to the host over the tx line.

If the request specified a read operation, then a response will be produced. These

responses have the same structure as the read request itself, albeit with the data

read from memory substituted in place of the address. This results in a message of

the same length, just with the address swapped for data. If the request specified a

write operation, then no response will be sent back to the host. This stems from

the design of Manta’s internal bus - the bus doesn’t contain any metadata about a

write operation, so there is no new information to provide the host. This differs from

other data transfer models that provide metadata for write operations. For instance,

a POSIX write syscall returns the number of bytes written, and a POST request

made over the Hypertext Transfer Protocol (HTTP) returns a status code indicating

if the write was successful. Manta provides no metadata of this sort. If a host wishes

to know if a write was successful, it must read from the address after writing to it,

and verify that the data returned is as expected.

3.3.2 Justification

This message format was designed primarily for human readability. Typically users

do not need to manually inspect UART traffic, as it is handled automatically by the

Python API. However, situations can be encountered where debugging the tool itself

is necessary, at which point the UART traffic may need to observed. One of Manta’s

core design goals is to provide a simple user interface, and in these situations, the

serial port itself becomes the user interface. As a result, the messages are designed

to be as simple and readable as possible.

Consequently, it was chosen to represent numbers as hexadecimal digits so that

they could be easily interpreted in a terminal emulator. If the address and data fields

were encoded as raw bytes, they would contain a significant amount of missing data

when viewed. This is because most terminal emulators parse the bytes as ASCII,

which contains many “non-printable” characters that have no textual representation.

These characters are not shown in a terminal, meaning the traffic would be impossible
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to read - an undesirable behavior when debugging an interface.

Although not strictly necessary, the EOL is also included for readability. When

viewed in a terminal emulator, it renders a newline, placing each bus transaction on its

own line. This makes UART traffic far easier to follow. The EOL consists of both the

Carriage Return and Line Feed characters, which is a choice made for compatibility.

Windows needs both CR and LF to specify a newline, while POSIX-based operating

systems only require the LF. Including both ensures traffic can be easily inspected on

hosts following either convention.

Lastly, no hardware or software flow control is used, as none is needed. The

FPGA is always ready to accept incoming bytes because responses are never longer

than requests. Namely, a seven-byte read request will generate a seven-byte read

response, and a 11-byte write request will generate no response. This means the

FPGA will never need to stall an incoming request while it transmits a response.

As a result, the FPGA is able to process a series of incoming requests with no gaps

between them, and is always ready to accept an incoming request. This removes

the need for flow control, as the host never needs to stop sending requests while it

waits for the FPGA to process them. This reduces the complexity of both the UART

interface as well as the data bus, which has no concept of backpressure and does not

have any ready/valid signalling.

3.4 Ethernet Interface

3.4.1 Description

For situations where the onboard UART is not available, Manta provides a 100Mbps

Ethernet link for communicating between the host machine and target FPGA. This

link implements a L2 MAC on the FPGA, designed to be directly connected to a host

machine on a dedicated network adapter. The MAC is controlled by a bridge interface,

which performs the exact same function as it does on the UART interface. Incoming

packets are parsed into bus transactions, placed on the bus, and any response data is
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encapsulated into another packet sent to the host.

This is done by interacting with an Ethernet PHY, an onboard transceiver IC that

converts between the FPGA’s logic-level signaling and the voltages on the cable’s

twisted pairs. The communication between the Ethernet PHY and the FPGA is

done over an interface that’s dependent on the speed of the PHY. The 10/100 Mbps

interface used on the Nexys A7-100T uses the RMII as defined in IEEE 802.3u. RMII

is the second-oldest member in the Media Independent Interface family, with newer

revisions of 802.3 supporting faster interfaces.

Manta’s bus clock must be equivalent to the PHY’s reference clock if Ethernet is

to be used - in the case of the 100Mbps RMII PHY on the Nexys A7 used in 6.205,

this is 50MHz. This doesn’t pose a problem for user logic, which is connected through

Manta’s cores that perform CDC internally. It does mean that a reference clock for

the PHY has to be synthesized outside of Manta itself, and the means by which this

is done varies by FPGA vendor and toolchain.

This MAC allows for the usage of packets with the structure shown in Figure 3-8.

The bus transaction being communicated is placed at the beginning of the packet’s

payload field, which IEEE 802.3 allows to vary in length from 46 to 1500 bytes.

The 46-byte lower limit requires 41 bytes of zero padding to be added to the five

bytes used to specify a bus transaction, and only one bus transactions is specified in

each Ethernet frame. This abundance of unused space results in all packets being

the same length, whether the packet contains a read request, write request, or read

response. Packets containing write requests elicit no response from the FPGA, just

as write requests delivered over UART produce no response. The justification for this

behavior is shared between the Ethernet and UART interfaces, and is provided in

Section 3.3.2.

These packets are addressed directly to the host’s MAC address, which is obtained

during code autogeneration. These packets also use a fixed Ethertype of 0x88B5,

which is specially reserved for “public use and for prototype and vendor-specific pro-

tocol development” in IEEE 802.1. This was done to create an Ethernet II frame

instead of a legacy 802.3 frame, without having to implement a higher level protocol
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Figure 3-8: Structure of the Ethernet packets exchanged between the host and FPGA.

like TCP or UDP to safely use a fixed Ethertype. This allows the MAC to use modern

Ethernet II frames safely, but save FPGA resources.

3.4.2 Justification

In addition to not being necessary for compatibility with modern networks, imple-

menting higher-level protocols such as UDP or TCP was avoided. This would permit

debugging any FPGA on the same network as the host, but this would not be par-

ticularly useful as a local machine would still be required for uploading bitstreams,

which happens frequently during debugging. Instead, it is recommended that remote

debugging be performed by connecting a host machine to a remote FPGA over a local

link, and then logging in into the remote host. This paradigm is popular amongst

vendor tools, which can expose debug servers over the network for remote debugging.

Lastly, the design and source code of the MAC’s receiving side is taken from the

Ethernet lab developed for 6.205 by Jay Lang. This was done for convenience and

maintainability, as the course staff using Manta will already be familiar with this

MAC implementation. The MAC’s transmit side was completed by the author of this

text, and reused some portions of the receiving side. Portions written by Lang are

distributed under a 3-Clause BSD license, which is included along with his copyright

in the publicly-distributed source code. This BSD license permits redistribution under

alternative licenses, so while it may contain components with other licenses, Manta

on the whole is released under Version 3 of the GNU General Public License (GPLv3).

43



3.5 Block Memory Core

3.5.1 Description

Block memory, also referred to as block RAM (BRAM), is a staple of FPGA designs.

It consists of dedicated blocks of memory spaced throughout the FPGA die, and is

very commonly used in hardware designs due to its configurability, simplicity, and

bandwidth. Although each block memory primitive is made of fixed-function silicon,

EDA tools allow them to be mapped to logical memories of arbitrary width and

depth, combining and masking off primitives when necessary. These are exposed to

the user’s logic over ports, which contain four signals for reading and writing to the

BRAM. These signals specify the address, input data, output data, and the desired

operation (read/write) to the core. Most BRAM primitives include two ports, each

of which may live on a separate clock domain, making them useful for clock domain

crossing in addition to data storage. Each port can handle a memory operation on

every clock edge, which is practically the maximum memory bandwidth possible in

any digital system.

Central to Manta’s design objectives is the ability to debug user logic in an intu-

itive and familiar manner. Practically, this means being able to interact with bits on

the FPGA in whatever method they’re presented. Block memory is one such method,

and their pervasive use is acknowledged by the inclusion of a Block Memory Core in

Manta. This core takes a standard dual-port, dual-clock BRAM and connects one

port to Manta’s internal bus, and gives the other port to the user. This means that

both the host machine and the user’s logic have access to the BRAM, allowing large

amounts of data to be shared between both devices.

This is accomplished by architecting the Block Memory Core as shown in Figure

3-9. Internally, the Block Memory Core consists of multiple BRAMs connected in

parallel. This is done to maintain the ability to create block memory of arbitrary

width and depth. Manta’s internal bus uses 16-bit data words, so if a user wishes to

create a BRAM of width 𝑁 where 𝑁 is larger than 16 bits, then multiple addresses

in Manta’s memory are required to contain the data at a single BRAM address.
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These multiple addresses are created by creating many smaller block memories, each

of which stores a 16-bit slice of the 𝑁 -bit wide data. As a result, 𝑐𝑒𝑖𝑙(𝑁
16
) smaller

BRAMs are needed to present a BRAM of width 𝑁 to the user. One set of ports on

these smaller BRAMs are concatenated together, which presents a 𝑁 bit wide BRAM

to the user. The other set of ports are individually connected to Manta’s internal

bus.

Figure 3-9: Block diagram of the Block Memory Core. Blocks in blue are clocked on
the bus clock, and blocks in orange are clocked on the user clock.

3.5.2 Justification

Although the arrangement of the constituent BRAMs is relatively simple, it is rather

inefficient in terms of address space. For instance, a Block Memory Core configured

to be 19 bits wide and 128 addresses deep would be made of two 16 bit wide BRAMs,
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containing 128 addresses each. This would occupy 256 addresses, each of which

contain a 16-bit data word. This means that 256 × 16 = 4096 bits can be accessed,

but the user will only store 256× 19 = 2432 bits in the memory. If the memory was

perfectly packed, then only 2432÷16 = 152 addresses would be required. This means

that only 59% of the addressable memory contains useful bits.

Address space comes at a premium on a 16-bit address bus. Numerous methods

were considered for fully-packing data into each memory address, but none were

simple enough to warrant implementation. It is believed that the true solution to this

problem is changing the address width on Manta’s internal bus. This is discussed as

future work in Section 5.1.4.

However, it should be noted that this inefficiency only applies to the address

space, not the BRAMs themselves. During synthesis, EDA tools will find unconnected

registers and prune the logic driving them, including those within BRAMs. In the

example described above, two 16-bit wide BRAMs implement a block memory core

that is presented to the user as 19-bits wide. As designed, Manta will place the first

16 bits of the 19-bit data word into the first BRAM, and the remaining 3 bits in the

second BRAM. This leaves the remaining 13 bits unused. Normally, this would cause

16 bit’s worth of resources to be utilized on the FPGA, but EDA tools will optimize

these out during synthesis. As a result, no unnecessary BRAM is claimed on the

FGPA.

It is also worth mentioning that this architecture raises an issue of synchronicity.

For BRAMs with widths larger than 16 bits, updating the data at one (user-side,

not bus-side) address requires multiple bus transactions. During this time, the data

at a given user-side address will be a mixture of its initial value, and the incoming

value from the bus. Depending on the application, this can be problematic. If the

user’s logic assumes that the entire contents of the BRAM are valid at all times, then

garbled data can propagate into downstream logic.

In situations like this, it is typical to include two BRAMs, such that one may be

written to while the other is read from. Which memory bank to use for each purpose

is typically communicated with a doorbell, such that the two may be exchanged once
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the entirety of the new data arrives. This doorbell can be implemented as an input

or output probe on an IO core, which is described in Section 3.6.

Lastly, the Block Memory Core uses inferred BRAM templates. These are snippets

of human-readable Verilog that define logic that behaves like a BRAM, such that it

is implemented as a BRAM by the EDA tools during build. This allows for greater

portability between chip families and vendors, each of which design the block memory

primitives on their chips differently. By using an inferred BRAM template, Manta

does not need to account for these differences, and thus the resulting complexity of

offloaded to the EDA tools.[18]

3.6 IO Core

3.6.1 Description

Registers are a fundamental building block of digital hardware. Registers store values

as they move throughout the FPGA, and are operated on by the logic placed onboard

the chip. Interfacing with this logic in an intuitive manner is Manta’s primary design

objective, and as a result it includes an Input/Output (IO) core to directly measure

and control arbitrary signals on the FPGA. This is done by routing them to registers,

which are then exposed to the host over Manta’s internal bus.

This is done with the architecture shown in Figure 3-10. A series of connections

are made to the user’s logic. These are called probes, and each may be either an input

or an output. If the probe is an input, then its value is taken from the user’s logic,

and stored in a register that may be read by the host machine. If the probe is an

output, then its value is provided to the user’s logic from a register written to by the

host. The widths of these probes is arbitrary, and is set by the user at compile-time.

However, the connection between these probes and the user’s logic is not direct.

The state of each probe is buffered, and the buffers are updated when a strobe register

within the IO core is set by the host machine. During this update, new values for

output probes are provided to user logic, and new values for input probes are read
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Figure 3-10: Block diagram of the IO core. Blocks in blue are clocked on the bus
clock, and blocks in orange are clocked on the user clock.

from user logic.

This is done to mitigate the possibility of an inconsistent system state. Although

users may configure registers of arbitrary width, Manta’s internal bus uses 16-bit

data words, meaning operations on probes larger than 16 bits require multiple bus

transactions. These transactions occur over some number of clock cycles, with an

arbitrary amount of time between each.

This can easily cause data corruption if the signals were unbuffered. For instance,

a read operation on an input probe would read 16 bits at a time, but the probe’s

value may change in the time that passes between transactions. This would cause the

host to read a value for which each 16 bit chunk corresponds to a different moment

in time. Taken together, these chunks may represent a value that the input probe

never had. Similar corruption would occur when writing to an unbuffered output
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probe. The value of the output probe would take multiple intermediate values as

each 16-bit section is written by the host. During this time the value of the output

probe is not equal to either the incoming value from the host, or the value the host

had previously written to it. The user logic connected to the output probe has no

idea of this, and will dutifully use whatever value it is provided. This can very easily

induce undesired behavior in the user’s logic, as it is being provided inputs that the

user did not specify.

Buffering the probes mitigates these issues, but slightly modifies the way the host

machine uses the core. When the host wishes to read from an input probe, it will

set and then clear the strobe register, which pulls the current value of the probe into

the buffer. The host then reads from buffer, which is guaranteed to not change as it

is being read from. Writing to an output probe is done in much the same way. The

host writes a new value to the buffer, which is flushed out to the user’s logic when

the strobe register is set and cleared. This updates every bit in the output probe all

at once, guaranteeing the user logic does not observe any intermediate values.

These buffers also provide a convenient location to perform clock domain crossing.

Each buffer is essentially a two flip-flop synchronizer, which allows the IO core to

interact with user logic on a different clock than Manta’s internal bus.

3.6.2 Justification

The functional simplicity of the core left little choice in its architecture. However, a

minor variation of this architecture omitting the strobe register was considered. In

this design, when a host wanted to read or write to probes wider than 16 bits, it would

still access the constituent memory addresses over multiple transactions, but ordered

the transactions by increasing memory address. This meant that the lowest memory

location occupied by a probe would be accessed first, and the highest memory location

would be accessed last. This would allow the IO core to know when a probe was going

to be read from or written to, and automatically flush the buffers. In the case of an

input port, this would occur when the lowest memory location was accessed, and in

the case of an output port, this would occur when the highest memory location was
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accessed.

This approach offered the advantage of speed at the expense of complexity. By

inferring when the buffers should be flushed, setting and clearing the strobe register

would not be necessary. However, this increase in speed would be moot, as the IO

core is not intended to interface with timing-critical logic. The speed at which the IO

core updates signals on the FPGA is entirely dependent on the speed of the interface

between the host machine and FPGA, whose timing is not guaranteed. As a result,

increasing the speed of something asynchronous with user logic is not particularly

useful, and does not justify the additional complexity.

3.7 Logic Analyzer Core

3.7.1 Description

Central to Manta’s design is the ability to debug logic in a manner intuitive and

familiar to 6.205 students. As such, Manta includes a logic analyzer tool that allows

them to inspect their logic through a waveform display, similar to how it might be

inspected through simulation. A typical workflow for using the core consists of the

following:

• The user describes the signals they would like to probe in the configuration

file. The user provides a list of probe names and widths, which are needed to

generate suitable Verilog.

• The user describes the trigger conditions that must be met inside the FPGA

fabric for a capture to begin. Triggers are defined as simple logical operations

on probes, for instance checking if a probe named foo is equal to the number 3,

or if a probe named bar has just transitioned from high to low. The user also

specifies the number of samples to be captured, referred to as the sample depth

of the core.

• Once fully configured, a Manta module is generated and flashed to the target
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FPGA with the process described in 3.1.1.

• Once flashed, the user initiates the ILA from the host machine. This causes

the Logic Analyzer Core to start sampling its inputs, waiting for the trigger

condition to be met.

• Once met, the core begins saving the values of the probes to an internal block

RAM called the sample memory. This occurs every clock cycle until a number of

samples equal to the sample depth has been captured, and the sample memory

is full.

• Once complete, the host machine reads out the sample memory and stores it

internally. This is then exported as a VCD file for use in a waveform viewer like

GTKWave.

Figure 3-11: A logic analyzer capture displayed in GTKWave.

This workflow is very similar to the behavior of the Xilinx ILA or a benchtop

logic analyzer. This is intentional. FPGA engineers are familiar with on-chip logic

analyzers, and electrical engineers are familiar with external logic analyzers. Very

little is intended to be different, although a few extra features deserve mention:
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3.7.2 Features

Trigger Modes

The behavior described in 3.7.1 is referred to as single-shot trigger mode. This means

that once the trigger condition is met, data is captured on every clock cycle in a

continuous single shot. This is useful and the preferred behavior for most cases, but

Manta also supports Incremental and Immediate trigger modes.

In Incremental mode, samples are only recorded to sample memory when the

trigger condition is met, not once it is met. This allows slower-moving behavior to

be captured. For instance, digital audio signals on a FPGA commonly use a 44.1kHz

sampling frequency, but are routed through FPGA fabric clocked at hundreds of

megahertz. As a result, many thousands of clock cycles may go by before a new

audio sample is processed by the FPGA - filling the sample memory of a traditional

logic analyzer with redundant data in the meantime. Placing Manta’s Logic Analyzer

into incremental mode solves this, as audio samples will only be saved to the sample

memory when they change, assuming the trigger is configured correctly. In this case,

the amount of memory required on the FPGA to capture a fixed number of audio

samples is reduced by a thousandfold.

In Immediate mode, the trigger condition is ignored. The core begins filling the

sample memory as soon as it is enabled, stopping only once the sample memory is

filled. This allows the user to inspect the current state of their probes without a trigger

condition. This is especially useful for investigating cases where a trigger condition

is never being met, such as latchup or deadlock conditions. This mode is also useful

for obtaining a random snapshot of the FGPA’s state. The core is enabled by an

interface (UART, Ethernet) that is slow relative to the clock speed of the FPGA

fabric, meaning that the capture occurs at an effectively random time. Successive

captures of this nature can be used to determine the “average" state of onboard logic

- what information is “usually" on a bus, or what state a module is “typically" in.
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Configurable Trigger Location

In the scenario described in 3.7.1, the sample memory is written to as soon as the

trigger condition is met - and not before. This only records the probe values after

the trigger, but knowing the state of the FPGA immediately before is also rather

useful. To do this, the core can be configured to buffer the last few clock cycles

before the trigger condition. During this time the sample memory is used as a FIFO,

and once the trigger condition occurs, samples are acquired until the sample memory

is filled. The number of cycles to record ahead of the trigger is called the trigger

position. By default, most logic analyzers place the trigger condition in the middle

of the acquisition such that there is equal amounts of data from before and after the

trigger condition. To feel as intuitive and familiar as possible, Manta defaults to the

same. However, this can be changed by writing to a register in the logic analyzer

core.

Figure 3-12: Regions captured by the Logic Analyzer Core as trigger position is
varied.

Simulator Playback

Manta also allows data captured from the Logic Analyzer core to be “played back”

in simulation. Any obtained capture data can be exported as a .mem file, which can
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be used in most simulators via the readmemh and readmemb Verilog functions. Manta

autogenerates a convenient Verilog wrapper for this, allowing users to simulate logic

with signals directly measured from the real world. This is useful for verifying that a

testbench is providing the proper inputs to logic under test. This is useful for a few

scenarios:

• Input Verification. This targets the common student experience in 6.205 of

designs working in simulation, but failing in hardware. In the absence of any

build errors, this usually means that the inputs being applied to the logic in

simulation don’t accurately represent those being applied to the logic in the real

world. 1 Playing signals back in simulation allows for easy comparison between

simulated and measured input, and the state of the logic downstream.

• Sparse Sampling. When users are debugging, their fundamental concern is the

state of their logic. Normally this is obtained by sampling every net of interest

with a logic analyzer probe, but for designs with a large amount of internal

state sampling many signals requires significant block memory and lots of time

to set up. If the design has fewer inputs than state variables, it requires fewer

resources to sample the states and simulate the logic than to directly sample the

state. For instance, debugging a misbehaving branch predictor in a CPU can be

done by recording its address and data busses, playing them back in simulation,

and inspecting the branch predictor there. This frees the user from having to

sample the entire pattern history table, which would consume significant block

memory.

Reprogrammable Triggers

Manta’s triggers are reprogrammable, such that rebuilding source code is not neces-

sary to change the trigger condition. Each of the logic analyzer’s input probes has a
1Sometimes the toolchain will step in and modify the logic specified by the user. For example,

if a net is driven by two nets at the same time, Vivado will connect the net to ground, and raise a
critical warning. In this case, a valid bitstream is still generated, but it doesn’t configure the FGPA
in a way that will match simulation.
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trigger assigned to it, which continuously evaluates some combinational function on

the input. This logic can be programmed to check for rising edges, falling edges or

any change at all. It can also be programmed to check the result of a logical operation

(such as >, ≤, =, ̸=, etc.) against an argument. The operation and argument for

each probe’s trigger are set with a pair of registers in Manta’s memory.

The output of each of the individual triggers is then combined to trigger the logic

analyzer core as a whole. These are combined with a 𝑁 -input logic gate (either AND

or OR) specified by the user through another register in memory. As a result the

entire trigger configuration is specified by the state of Manta’s memory, and changes

to the configuration require resetting registers, not resynthesizing bitstreams.

However, this greatly restricts the trigger conditions users can specify. To mitigate

this, Manta provides an option for an external trigger that allows for more complex

triggers. When enabled, Manta adds an input port to the manta Verilog module,

and triggers off its value, rather than the internal comparators. This allows users to

provide their own Verilog to produce the desired trigger condition.

3.7.3 Architecture

The Logic Analyzer Core’s implementation on the FPGA consists of three primary

components:

• The Finite State Machine (FSM), which controls the operation of the core.

The FSM’s operation is driven by its associated registers, which are placed in

a separate module. This permits simple CDC between the bus and user clock

domains.

• The Trigger Block, which generates the core’s trigger condition. The trigger

block contains a trigger for each input probe, and the registers necessary to

configure them. It also contains the 𝑁 -logic gate (either AND or OR) that gen-

erates the core’s trigger from the individual probe triggers. CDC is performed

in exactly the same manner as the FSM. If an external trigger is specified, the
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trigger block is omitted from the Logic Analyzer Core, and the external trigger

is routed to the FSM’s trig input.

• The Sample Memory, which stores the states of the probes during a capture.

This is implemented as a dual-port, dual-clock block memory, with the bus on

one port and the probes on the other. The probe-connected port only writes to

the memory, with the address and enable pins managed by the FSM. CDC is

performed in the block RAM primitive itself.

3.7.4 Justification

Special attention was paid to clock domain crossing while designing this core. Manta

hosts multiple cores by daisy-chaining them across a common bus, which can be on a

different clock than the user logic. This requires proper clock-domain crossing, which

can be confusing to implement if not explicitly specified in the architecture. To ease

this, the Logic Analyzer Core groups all configuration registers into modules that run

on the bus clock. Separating them into a separate module allows for the easy inclusion

of a two flip-flop synchronizer between the registers and the logic they control. This

separation also allows for code reuse, as the configuration registers for the FSM and

trigger block share the same source as the IO core described in (3.6).

Care was also taken in the design of the reprogrammable logic for specifying

trigger conditions. While restrictive, the comparator-based design offers reasonable

flexibility while consuming few resources on the FPGA. Logic that supports on-the-fly

reconfiguration for more complicated triggers could be designed, but would consume

significant resources on the FPGA.

For instance, at one point it was considered to specify trigger conditions with

a small scripting language, which would compile to bytecode for a miniature CPU

inside the trigger block. This would allow for extreme generality, but would require

significant time to learn the language, and FPGA resources to run the bytecode. Very

rarely does 6.205 encounter situations requiring trigger conditions that would require

a triggering scheme this elaborate, and those that do usually indicate poor systems
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Figure 3-13: Block diagram of the Logic Analyzer Core. Blocks in blue are clocked
on the bus clock, and blocks in orange are clocked on the user clock.

design on behalf of the user. As a result, use cases requiring complexity beyond that

provided by the comparator-based approach are deemed far too rare to design for,

and are not worth the added complexity, resource utilization, and time.

Simplicity aside, comparator-based approaches are familiar to most users. The
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Xilinx ILA specifies its trigger condition with comparators, as do most benchtop

logic analyzers. Keeping with convention prevents users from being distracted by

extra features, and allows them to focus on debugging their logic.
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Chapter 4

Evaluation

4.1 Bandwidth

When using Manta, the user will often need to access a large portions of Manta’s

internal memory. For example, running a Logic Analyzer core requires the host to

read the entire sample memory contained in the core. This action is blocking, and

the user must wait for data to be read from the entire core before they may continue

debugging. As a result, the speed at which data can be read and written heavily

influences the user’s productivity and experience. Manta’s internal bus can read or

write 16 bits of data to memory every clock cycle, which, on the native 100MHz clock

of the Nexys A7 used in 6.205, is 1.6 Gbps. Although the bus supports bandwidths

this high, memory operations do not take place at this speed as they are bottlenecked

by the interface used to connect the host machine to the FPGA. These interfaces

allow the host machine to issue transactions (memory reads and writes) on Manta’s

internal bus, over UART or Ethernet.

The investigation of these limitations is the subject of this chapter.
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4.1.1 UART Interface

Most FPGA development boards expose a UART interface over a USB port, which

is typically also used for programming the device. This is typically done with a

dedicated USB-UART converter chip, such as those from Future Technologies Devices

International (FTDI). These chips are extremely common in embedded electronics,

and the FT2232 family is particularly popular with FPGAs. This chip exposes two

data channels to the host machine over a single USB port, allowing for one channel

to be used to program the FPGA, and the other to provide a UART interface to

it. This allows one USB cable to provide programming, communication, and (for

smaller FPGAs) power. The latest generation of the FT2232 is the FT2232H, and is

the variant found on most Digilent FPGA development boards, including the Nexys

A7 used in 6.205. The chip is also used on the iCEstick development board, which

is popular within the open-source community for its compatibility with open-source

EDA tools.

Although its internal bus can reach gigabit speeds, Manta’s memory bandwidth

is limited by that of the converter. The pervasive FT2232H advertises a maximum

baudrate of 12 Mbps, however the variety of operating systems and device drivers

practically limits this to 3 Mbps. Depending on operating system, the driver used for

the FT2232 can be sourced from the OS vendor, FTDI, the open-source community,

libusb-based userspace drivers, or even Vivado. As a result, 3 Mbps represents a

reasonable maximum speed on most host machines and FPGA development boards.

As such, it is used for the following analysis.1

Importantly, 3 Mbps refers to the speed of bits on the tx and rx lines, not the

speed at which bits in Manta’s memory are accessed. Despite bits being placed on

the interface at 3Mbps, the effective memory bandwidth is far lower. For instance,

a single read requires sending a 7 byte message, where each byte occupies 10 bits on

the wire due to the start and stop bit. This causes 70 bits to be placed on the wire to

read 16 bits from memory, and equates to an efficiency of 22%. Writes are slightly less
1It is believed this legacy behavior from the previous generation of the FT2232H (the FT2232D)

which supported a maximum baudrate of 3 Mbps.
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efficient, as writing 16 bits to memory requires sending an 11 bytes message, placing

110 bits on the wire. This still only accesses 16 bits of Manta’s memory, netting an

efficiency of 14.5%.

Due to this overhead, the 3Mbps bandwidth offered by the FT2232H is reduced

to a maximum speed of 436.3kbps while writing to memory, and 685.7kbps while

reading from it. To confirm these speeds were being obtained with the operating

system, device driver, and serial library (pySerial) being used, a test was constructed

to measure the effective bandwidth of the UART interface. This test involved sending

transactions in bursts of varying lengths, and measuring the time between the arrival

of the first and last transaction in the burst. As this procedure tests the software stack,

the transfer time can not be accurately measured from the host machine. Instead, it

was measured directly from the FPGA, by placing a Manta core on the FPGA along

with a counter to measure elapsed time. The results of this test are presented in

Figure 4-1. Although the data presented here was recorded on a Linux host, similar

performance is seen on Windows and macOS devices.

Two notable behaviors are seen in the results of the test. First, the time needed to

execute a transfer is relatively constant for small transfer sizes. This occurs around

a transfer size of 8kbits, below which reads take ≈50ms and writes take ≈30ms, far

slower than the theoretical speed. This is likely due to the many sets of buffers

between user space and the device itself, each of which with its own flow control and

interrupts. [22] It is suspected that some buffer is serviced more often once transfer

sizes exceed 8kbits, but transfers larger than this converge to a fixed speed.

Second, the write performance converges to its theoretical value, but the read

performance does not. Rather, the read performance converges to a fixed speed nearly

half as fast as the theoretical value. This is because pySerial, in its current usage,

is single-threaded. To read from a memory address, the host sends a message to the

FPGA requesting the read, to which the FPGA issues a response with the requested

data. Currently, a single thread on the host sends all requests, and then receives

all responses. This causes an approximate halving of the effective bandwidth, as the

latency between buffers must be incurred twice. This could be solved by spawning a
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Figure 4-1: Memory bandwidth between the host machine and FPGA over a UART
interface. Each point represents the fastest transfer out of 5 identical runs.

separate thread to read responses while the main thread sends requests.

Despite the inefficiencies, it is worth contextualizing these bandwidths. The

XC7A100T present on the Nexys A7 used in 6.205 contains 4,860kbits of block ram.

[14] With the speeds measured in Figure 4-1, writing to all of the block memory on the

chip would take 11.4 seconds, and reading the entire BRAM would take 7.25 seconds.

Rarely would a logic analyzer core need this much memory. The largest configuration

tested in ?? uses 16 32kbit BRAM primitives, which takes 2.7 seconds to read, and

1.2 seconds to write. This is considered fast enough to provide a debugging experience

on par with the Xilinx ILA.
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4.2 Resource Utilization and Build Time

4.2.1 Logic Analyzer Core

The performance of the Logic Analyzer core was evaluated by measuring its resource

utilization on the FPGA, and build time in Vivado. This was expected to vary

with sample depths and probe sizes, so three test configurations were chosen with

parameters representative of use cases in 6.205. These configurations consisted of a

Wide core, which recorded 1024 samples of 4 probes, each 16 bits in width. This was

chosen to demonstrate the core’s performance with many input signals, sampled for

a relatively short time. This test case is complemented by the Deep configuration,

which samples a few signals over a long time, recording 32678 samples of 4 probes,

each 4 bits in width. Finally, a Nominal configuration was chosen as an intermediary

between the two, recording 4096 samples of 4 probes, each 8 bits in width. As 6.205

students are likely to use Manta over UART than Ethernet, the UART interface was

selected for each core. For comparison, Xilinx ILAs with equivalent configurations

were also tested.

The cores were implemented on the Nexys A7, and built by Vivado 2022.2 running

on an Ubuntu 22.04 server equipped with a Ryzen 2700X, 16GB of RAM, and 512GB

of SSD storage connected over NVMe. To prevent unconnected logic from being opti-

mized out of the design, each core’s probes were connected to a simple counter. This

ensured that the inputs were driven by onboard logic, with as little added resource

consumption as possible.

It is worth mentioning that Vivado supports building source code in either project

or non-project mode. The choice between the two does not affect the resources used

by the design, but builds in non-project mode are often significantly faster. Manta’s

Logic Analyzer and the Xilinx ILA may be built in either mode, but the ILA is

typically built, configured, and run in project mode. However, 6.205 typically builds

student projects in non-project mode. To provide a fair comparison, the ILA is built in

project mode only, and Manta is built in both. This allows both typical workflows to

be properly represented, but isolates any performance improvements due to building
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in non-project mode. This allows for a fair evaluation of build times between the ILA

and Logic Analyzer Core, shown in Figure 4.1.

Configuration Core Build Time LUT FF BRAM

Wide
1024 Samples
4 Probes
16 bits each

Xilinx ILA (project mode) 2m 50s 1283 2230 2
Manta (project mode) 1m 57s 532 610 2
Manta (non-project mode) 1m 35s 532 610 2
Improvement 44% 58% 73% 0%

Nominal
4096 Samples
4 Probes
8 bits each

Xilinx ILA (project mode) 2m 47s 1206 2093 4
Manta (project mode) 1m 57s 372 476 4
Manta (non-project mode) 1m 35s 372 476 4
Improvement 43% 69% 77% 0%

Deep
32678 Samples
4 Probes
4 bits each

Xilinx ILA (project mode) 2m 53s 1238 2054 16
Manta (project mode) 1m 58s 402 427 16
Manta (non-project mode) 1m 37s 402 427 16
Improvement 44% 68% 79% 0%

Table 4.1: Performance comparison between the Xilinx ILA and Manta’s Logic Ana-
lyzer Core, in terms of build time and FPGA resource utilization. Each of the build
times shown represents the fastest of five runs.

In every case tested, Manta’s Logic Analyzer core builds faster and uses fewer

resources than the Xilinx ILA. Manta used between 58-81% fewer LUTs, and reduced

flip-flop usage by up to 90%. In all cases, Manta used the same number of BRAM

primitives as the ILA, and when built in non-project mode, took 44% less time. This

represents a sizable increase in performance relative to the ILA, and meets the design

objective presented in Section 1.2 of complementing vendor tools.

Additionally, the performance of the Logic Analyzer Core was measured relative to

itself. This was done with a parameter sweep over the core’s configuration variables:

sample depth, number of probes, and probe widths. Three values were chosen for

each, and for simplicity, all probes were set to the same width. The build times and

resource utilization of these configurations are shown in Table 4.2, 4.3, and 4.4.
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Number of Probes (Sample Depth = 1024)
4 8 16

Width

4

Build Time: 1m 29s
LUT: 298
FF: 397
BRAM: 0.5

Build Time: 1m 33s
LUT: 386
FF: 486
BRAM: 1

Build Time: 1m 34s
LUT: 532
FF: 610
BRAM: 2

8

Build Time: 1m 39s
LUT: 400
FF: 488
BRAM: 1

Build Time: 1m 43s
LUT: 560
FF: 634
BRAM: 2

Build Time: 1m 42s
LUT: 842
FF: 926
BRAM: 4

16

Build Time: 1m 48s
LUT: 560
FF: 670
BRAM: 2

Build Time: 1m 42s
LUT: 901
FF: 966
BRAM: 4

Build Time: 1m 54s
LUT: 1436
FF: 1558
BRAM: 8

Table 4.2: Resource consumption and build time of the Logic Analyzer Core with a
sample depth of 1024. Each of the build times shown represents the fastest of three
runs.

Number of Probes (Sample Depth = 2048)
4 8 16

Width

4

Build Time: 1m 31s
LUT: 301
FF: 400
BRAM: 1

Build Time: 1m 36s
LUT: 388
FF: 472
BRAM: 2

Build Time: 1m 35s
LUT: 540
FF: 616
BRAM: 4

8

Build Time: 1m 36s
LUT: 409
FF: 492
BRAM: 2

Build Time: 1m 44s
LUT: 560
FF: 640
BRAM: 4

Build Time: 1m 41s
LUT: 845
FF: 936
BRAM: 8

16

Build Time: 1m 49s
LUT: 567
FF: 676
BRAM: 4

Build Time: 1m 43s
LUT: 902
FF: 976
BRAM: 8

Build Time: 1m 56s
LUT: 1443
FF: 1577
BRAM: 16

Table 4.3: Resource consumption and build time of the Logic Analyzer Core with a
sample depth of 2048. Each of the build times shown represents the fastest of three
runs.
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Number of Probes (Sample Depth = 4096)
4 8 16

Width

4

Build Time: 1m 31s
LUT: 288
FF: 403
BRAM: 2

Build Time: 1m 35s
LUT: 372
FF: 476
BRAM: 4

Build Time: 1m 36s
LUT: 531
FF: 622
BRAM: 8

8

Build Time: 1m 38s
LUT: 401
FF: 496
BRAM: 4

Build Time: 1m 41s
LUT: 552
FF: 646
BRAM: 8

Build Time: 1m 42s
LUT: 838
FF: 947
BRAM: 16

16

Build Time: 1m 49s
LUT: 554
FF: 682
BRAM: 8

Build Time: 1m 44s
LUT: 890
FF: 987
BRAM: 16

Build Time: 1m 56s
LUT: 1425
FF: 1601
BRAM: 32

Table 4.4: Resource consumption and build time of the Logic Analyzer Core with a
sample depth of 4096. Each of the build times shown represents the fastest of three
runs.

Notably, build time appears to scale with the width of the probes, and is relatively

invariant to their number or sample depth. This behavior is also seen for similar tests

performed on the Block Memory Core, suggesting that this behavior could be the

result of the block memory used in the core. The mechanism that drives this behavior

is unknown, and would require further analysis.

Further, BRAM utilization is invariant with the organization of the BRAM, and

scales only with the number of bits used. This can be seen by the configurations

represented on the upper diagonal of Tables 4.2, 4.3, and 4.4, which use the same

amount of BRAM for a given sample depth, regardless of if the core has (4) 16-bit,

(8) 8-bit, or (16) 4-bit probes. This is likely the result of optimizations done during

the build, which shows that the BRAMs are being correctly inferred by Vivado.
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4.2.2 IO Core

Tests similar to those run on Logic Analyzer core (4.2.1) were also performed on the

IO core. Resource utilization was also expected to vary with the size and number of

probes, so three test configurations mirroring those performed on the Logic Analyzer

core were chosen. These also represent typical workloads seen in 6.205, and consist of

a Thin, Nominal, and Wide configuration. Each configuration contains four input and

output probes, but vary the width of the probes between 4, 8, and 16 bits respectively.

The performance of the IO core is compared to an equivalent Xilinx VIO core,

just as the Logic Analyzer was compared to the ILA in Section 4.2.1. The input

and output probes were connected to each other to prevent unconnected logic from

being optimized out of the design. This adds no additional logic to the design, and

therefore does not influence resource utilization on the FPGA. The designs were built

on the same machine described in Section 4.2.1, which was done in both project and

non-project mode for the same reasons described there. The results of the test are

presented in Table 4.5.

Configuration Core Build Time LUT FF BRAM

Wide
4 Input Probes
4 Output Probes
16 bits each

Xilinx VIO (project mode) 2m 07s 776 146 0
Manta (project mode) 1m 41s 145 195 0
Manta (non-project mode) 1m 21s 145 195 0
Improvement 37% 81% 86% 0%

Nominal
4 Input Probes
4 Output Probes
8 bits each

Xilinx VIO (project mode) 2m 05s 666 1227 0
Manta (project mode) 1m 41s 125 139 0
Manta (non-project mode) 1m 20s 125 139 0
Improvement 35% 81% 89% 0%

Thin
4 Input Probes
4 Output Probes
4 bits each

Xilinx VIO (project mode) 2m 05s 612 1110 0
Manta (project mode) 1m 41s 117 111 0
Manta (non-project mode) 1m 20s 117 111 0
Improvement 36% 81% 90% 0%

Table 4.5: Performance comparison between the Xilinx VIO and Manta’s IO Core, in
terms of build time and FPGA resource utilization. Each of the build times shown
represents the fastest of five runs.

These observed performance is similar to that of the Logic Analyzer core. In
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every case tested, Manta’s IO core builds faster and uses fewer resources than an

equivalent Xilinx VIO core. Manta builds around 36% faster, uses 81% fewer LUTs

and between 86-90% fewer flip-flops, all while sporting no increase in BRAM usage.

This is a significant performance improvement, and demonstrates that Manta meets

the performance objectives outlined in Section 1.2.

Although they may be promising, care should be taken to not interpret these

results beyond the test cases presented. The ILA and VIO cores include a piece of

logic Xilinx refers to as a Debug Hub, through which all debug cores communicate.

This includes the ILA and VIO in addition to other utilities. As a result, the results

presented in Figure 4.1 may reflect the design of the Debug Hub, and not the ILA

or VIO cores. The design of the Debug Hub is not public and its source files are

encrypted, so broad conclusions are not possible. However, it is clear that for typical

6.205 use cases, Manta builds faster and uses fewer resources on the FPGA, meeting

the design goals presented in Section 1.2. [20]

Tests of the IO Core against itself were also performed. This was done with

a parameter sweep over two variables: the number of probes on the core, and their

width. For simplicity, each probe was assigned the same width, and each configuration

was built in non-project mode. The resulting build times and resource utilization is

shown in Table 4.6.

The results show a consistent build time across all runs, regardless of number

of width of the probes. It is believed this represents some kind of lower bound in

the build process, where the additional logic specified by larger designs does not

contribute substantially to the observed performance. Further tests with more, larger

probes are needed to determine this. Despite this, the parameters chosen represent

typical cases encountered in 6.205, and it may be concluded that build time is roughly

invariant for designs of this size.
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Number of Probes
4 8 16

Width

4

Build Time: 1m 20s
LUT: 117
FF: 111
BRAM: 0

Build Time: 1m 21s
LUT: 125
FF: 139
BRAM: 0

Build Time: 1m 21s
LUT: 145
FF: 195
BRAM: 0

8

Build Time: 1m 21s
LUT: 127
FF: 127
BRAM: 0

Build Time: 1m 21s
LUT: 144
FF: 171
BRAM: 0

Build Time: 1m 22s
LUT: 180
FF: 259
BRAM: 0

16

Build Time: 1m 21s
LUT: 139
FF: 159
BRAM: 0

Build Time: 1m 22s
LUT: 163
FF: 235
BRAM: 0

Build Time: 1m 21s
LUT: 215
FF: 387
BRAM: 0

Table 4.6: Resource consumption and build time of the IO Core. Each of the build
times shown represents the fastest of three runs.

The results also show a pattern in the usage of LUTs and Flip-Flops. Configura-

tions presented on the ascending diagonal of Table 4.6 have similar LUT and Flip-Flop

usage, regardless of if they are configured as (4) 16-bit probes, (8) 8-bit probes, or

(16) 4-bit probes. This scaling is approximate, and additional testing is necessary to

determine the mechanism which presents this behavior.

Lastly, no BRAM primitives onboard the FPGA are utilized in any case. The IO

core contains its entire state in registers, and therefore no BRAMs are instantiated

anywhere in the design.
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4.2.3 Block Memory

Although the Block Memory Core has no equivalent Xilinx product, its resource uti-

lization can still be measured relative to itself. Similarly to the previous comparisons,

the resource utilization of the core is dependent on parameters chosen at compile-

time, in this case the width and depth of the memory. As a result, the utilization of

the core was measured through a parameter sweep, where four values were chosen for

the memory width and depth, producing 16 unique combinations. These were built

with Vivado in non-project mode, where a simple counter drove the block memory’s

user port, preventing any unused logic from being optimized out of the design. The

results of the test are presented in Table 4.7.

Depth
256 512 1024 2048

Width

8

BT: 1m 22s
LUT: 148
FF: 181
BRAM: 0.5

BT: 1m 22s
LUT: 153
FF: 191
BRAM: 0.5

BT: 1m 22s
LUT: 152
FF: 193
BRAM: 0.5

BT: 1m 23s
LUT: 156
FF: 195
BRAM: 1

32

BT: 1m 23s
LUT: 156
FF: 238
BRAM: 1

BT: 1m 23s
LUT: 156
FF: 241
BRAM: 1

BT: 1m 23s
LUT: 156
FF: 244
BRAM: 1

BT: 1m 23s
LUT: 169
FF: 247
BRAM: 2

128

BT: 1m 26s
LUT: 204
FF: 484
BRAM: 4

BT: 1m 25s
LUT: 204
FF: 493
BRAM: 4

BT: 1m 26s
LUT: 204
FF: 502
BRAM: 4

BT: 1m 26s
LUT: 207
FF: 511
BRAM: 8

512

BT: 1m 58s
LUT: 345
FF: 1469
BRAM: 16

BT: 1m 58s
LUT: 352
FF: 1502
BRAM: 16

BT: 2m 0s
LUT: 357
FF: 1535
BRAM: 16

BT: 1m 57s
LUT: 357
FF: 1568
BRAM: 32

Table 4.7: Resource consumption and build time of the Block Memory Core. Build
times are abbreviated by BT, each value shown represents the fastest of three runs.

Notably, the build time and usage of LUTs and Flip-Flops vary only with memory

width. The mechanism behind this behavior is not currently well understood, but it

is suspected this is due in some part to the series of small, 16-bit BRAMs instantiated

in the Block Memory Core. As the width of the memory is increased, more BRAMs
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are instantiated inside the core, presenting a greater load on Vivado’s block memory

optimizer. This combines multiple block memories into a single BRAM primitive,

and it is believed this optimization increases the build time. However, this is merely

speculation, and further profiling will be required to obtain conclusive results.
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Chapter 5

Conclusions

This thesis presents Manta, a tool for debugging programmable logic on FPGAs.

Manta is a lightweight, modular, platform-independent, and intuitive tool that serves

to complement vendor-provided debugging tools in educational, professional, and hob-

byist settings. This is done with a series of cores on a daisy-chained bus, which allow

users to debug their designs with logic analyzers, block memory, and direct access to

signals on the FPGA. The behavior of these cores can be easily extended through the

provided Python API, allowing for easy development of custom applications.

During development Manta was beta tested by several 6.205 alumni, whose initial

impressions of the tool were invaluable in guiding its development. Many thanks are

due to Brady Sullivan, Dev Chheda, Ivy Liu, Jan Park, and Jordan Wilke for the

wisdom shared and bugs discovered.

Although the work presented here represents a complete system that meets its

design goals, much further work is available that would enhance the reliability, utility,

and accessibility of the tool.
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5.1 Future Work

5.1.1 Formal Verification

A chain is only as strong as its weakest link, and Manta’s daisy-chained internal bus

is no exception. If any module mishandles a message and produces incorrect data,

all modules downstream are affected, which effectively disables the tool. This is most

likely to occur in the receive or transmit bridges, which are the most complex modules

in the chain and thus provide the most space to harbor bugs.

Formally verifying the behavior of these modules would improve Manta’s relia-

bility. Formal verification allows for a mathematical proof the hardware’s behavior,

ensuring that no invalid messages are placed on Manta’s internal bus, and no invalid

messages are sent back to the host. This can be extended to the rest of the logic

generated by Manta. Although the receive and transmit bridges likely harbor the

most bugs, formally verifying each core’s handling of bus transactions would also be

extremely useful. This would create a bus that is guaranteed to produce correctly-

formatted responses to correctly-formatted requests. This would mean bugs could

only exist in the cores’ handling of user logic, which again could be exhumed with

formal verification.

However, the universality of these guarantees comes at the cost of development

time. Properly verifying hardware is a nuanced and time-intensive process, and as

a result has not yet been performed on Manta’s hardware. However, modern open-

source tools such as SymbiYosys are very accessible, and can easily be used by future

developers of the tools presented in this work.

5.1.2 Additional Link Layers

To gain relevance in industrial settings, Manta absolutely needs to support PCI Ex-

press (PCIe) and 10 Gigabit Ethernet (10GbE). 100Mbps Ethernet and 3Mbps serial

will likely be more than sufficient for educational settings, but most FPGAs used at

professional scale are accelerator cards that connect over PCIe, or are connected to
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a very high-speed network in some fashion. Both PCIe and 10GbE are packet-based

protocols, the latter being a later revision to the MAC presented in this text. As a

result both protocols have physical, data link, and transport (or transaction) layers.

Typically the physical layer is usually handled by interface transceivers external to

the FPGA, and the data link layer is simple enough to be implemented in hardware.

However, communication at the transaction layer is very stateful, and is usually han-

dled by a soft microprocessor. This is subtly acknowledged by the work presented

here - Manta’s Ethernet stack only supports a L2 MAC as higher-level protocols are

incredibly difficult to implement in hardware.

This can be avoided with a handful of assumptions and careful systems design

[23], but the added complexity conflicts with Manta’s core design goal of simplicity.

Tastefully implementing these higher layers to balance simplicity and usability is the

subject of much further work.

5.1.3 Name-brand bus endpoints

Although using a “name brand” bus such as AXI, Avalon, or Wishbone for Manta’s

internal bus was foregone for the reasons specified in Section 3.2.2, being able to

interface with these busses is still useful. A Manta core exposing a controller or

peripheral on a “brand-name” bus would allow users to quickly test IP, allowing them

to confidently use logic sourced from commercial vendors or open-source repositories

like OpenCores. This would give digital designers a shortcut when bringing up logic

for the first time, increasing productivity and saving time.

This feature would also be useful to users developing their own bus-attached IP.

Bus traffic could be federated by a bus controller core, while also being sniffed by

a Logic Analyzer Core. This would make Manta able to debug at the individual

signal level with the Logic Analyzer core, the transaction level with the bus controller

core, and at the application level with its Python API. Being able to debug across

this many levels of abstraction concurrently is not a common feature of many FPGA

tools. Xilinx provide some tools that allow a host machine to control an onboard bus,

but these only target AXI controllers. [16]
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5.1.4 Data Bus Improvements

Although Manta’s internal bus was designed for simplicity, it could be made simpler.

Manta includes separate channels for read and write data, but only one is ever in use

at a time. To save resources on the FPGA, these could be combined into a single

data channel, where read and write operations are differentiated with the rw signal,

as is done currently. This means Manta would place data read from memory on data

during a read, and write the contents of data to memory during a write. This would

significantly lighten the resource utilization of the bus, as 16 bits are saved on every

connection between a pair of devices. For a daisy-chained bus topology with 𝑁 nodes,

this is 16× (𝑁 − 1) bits saved.

Additionally, Manta’s 16-bit wide address bus presents it with some limitations.

Manta’s Block Memory and Logic Analyzer Cores place a significant amount of mem-

ory on the bus, which rapidly consumes address space. This is exacerbated by memo-

ries wider than 16 bits, whose inefficient packing can be rather wasteful with address

space, as described in Section 3.5.2. Even if the memory was packed perfectly, only

16× 216 ≈ 1𝑀𝑏𝑖𝑡 worth of memory could be addressed by the bus, which is less than

a fourth of the block memory available on the Nexys A7 used in 6.205. Clearly, more

bits are needed

This raises the question of how large the address bus should be. Clearly 16 bits is

insufficient, and an address width of 32 bits would be the next most obvious choice.

However this is overkill for smaller designs, and would increase Manta’s resource

utilization and build time.

An alternative would be to set the width of the bus when Verilog is generated.

Manta’s Python API could size the address bus to be just wide enough to support

the cores in the current configuration, and no wider. This would use no more FPGA

resources than absolutely necessary, but at the expense of greater complexity during

HDL generation. The current structure of the Python API would easily allow this,

but a significant amount of code would need to be updated, making this optimization

time-intensive to implement.
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5.1.5 Waveform Processing Tools

Traditional benchtop logic analyzers typically include protocol decoders, which decode

digital protocols such as I2C, SPI, UART, CAN, and Ethernet from signals connected

to the logic analyzer. The resulting bus traffic is usually presented as another trace on

the waveform display, and can also be used in the analyzer’s trigger flow. This allows

for captures to begin on conditions such as a write to a specific address over I2C, the

start of a CAN frame, or a particular byte being sent over UART. This is remarkably

useful, as it allows for quick verification that the bus is behaving as expected.

Manta may benefit from features similar to these. However, some flexibility is

offered in their implementation as Manta consists of both a hardware component

on an FPGA, and a software component on a host machine. The protocol decoder

could be implemented on the FPGA, processing signals in real-time and optionally

using them as triggers in the Logic Analyzer Core. This would be the most similar

in function to traditional logic analyzers, but would require more resources on the

FPGA.

Alternatively, this analysis could be done on the host machine, after the data has

been captured. This would save the resource utilization on the FPGA, but sacrifice

the ability to decode in real-time. This would also allow users to perform completely

arbitrary analysis, as operations performed on the captured data would not be limited

to what Manta could place on the FPGA. Some external software tools are available

for this, such as the very modern Waveform Analysis Language [21].

Depending on circumstance either approach may be the most appropriate, but

both would be a welcome addition to Manta’s feature set.

5.1.6 Migrating to Verilator

As part of its automated testing, Manta runs a series of tests on the Verilog templates

used to generate its hardware. This is done in Icarus Verilog, which functions by

compiling a set of source files into an executable, which is then run in a custom

environment called vvp. This environment is tailor-made for Icarus, and does not
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support the addition of user code beyond the Verilog source.

However, this is not the case for other open-source simulators, such as Verilator.

It works by transpiling Verilog source to a C++ or SystemC model, which the user

includes in their own source code. Typically the user’s source is little more than a

wrapper to set up and run the test, but this workflow allows for user applications

that directly access the logic defined in the Verilog.

One such application is a virtual serial port, which provides a file from which

bytes may be read and written to - just like a physical serial port’s device driver

does. Operations on this file can be passed along to the device model generated by

Verilator, meaning communications sent over the virtual serial port appear identical

to those sent over a physical serial port to real hardware. This method was pioneered

by Dan Gisselquist, who has used it to great success [8].

Using a virtual serial port would allow Manta to be tested completely end-to-end

in simulation. Currently, Manta only tests individual components of its hardware in

simulations isolated from each other. Using Verilator for simulation would allow a

complete core to be tested in tandem with its Python API, allowing for a complete

integration test to be done entirely in simulation.

This would be a most welcome improvement, as presently Manta can only be tested

end-to-end in hardware. Trying to perform tests that accomodated this produced no

shortage of DevOps challenges, as automated tests required access to both a physical

FPGA as well as commercially-licensed, platform-constrained build tools. Integrating

this in GitHub Actions was remarkably difficult, and verifying equivalent behavior of

the tests across Windows, macOS, and Linux hosts was impossible. Using virtual

serial ports would remove this dependency on physical hardware, meaning the entire

system can be integration tested across multiple operating systems in parallel with

lightweight, open source tools.

5.1.7 FuseSoC Integration

FuseSoC is a open-source package manager and build system for hardware designs.

Here, “packages” are modules written in HDL, developed by the community and
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cataloged by FuseSoC. This allows users to include and manage external code in a

manner similar to pip, cargo, or npm, allowing easy reuse and distribution of code

across hardware projects.

This has greatly matured the state of open source hardware. Previously, most

community-developed cores were small project-specific designs with very similar pur-

poses, but little portability. Providing a unified frontend allowed the community

to focus its effort, deduplicating effort and building a mature catalog of portable

hardware designs.

It is believed that adding Manta to FuseSoC’s catalog direct some of this attention

towards the tool. FuseSoC has its own set of features for automatically generating

these cores, which it also specifies with a YAML configuration file. Little more than

a wrapper script would be necessary to properly integrate with FuseSoC. This would

allow for even smoother usage of Manta, while also expanding its user base and

soliciting developer attention.
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Appendix A

Online Documentation

This thesis devotes heavy attention to Manta’s design and the reasoning behind it,

as well as its performance. However, a description of the practical nuts-and-bolts of

working with the tool is notably absent. This is intentional, and is done to keep this

thesis relevant and readable. As the tool continues to evolve, the commands run in a

user’s shell and functions imported from the API are guaranteed to change, but the

overarching design of the tool will likely remain relatively constant. Describing the

design in proper detail with full context is difficult to do in online documentation,

just as it is difficult to describe methods of an API in a thesis. As a result, these

works are separate.

The online documentation may be accessed at https://fischermoseley.github.

io/manta/. If this domain ever becomes unavailable, users may build the website lo-

cally by cloning Manta’s source code from https://github.com/fischermoseley/

manta, and running make serve_docs at the command line after installing Material

for MkDocs with pip install mkdocs-material. If that is not possible, then the

site Markdown source may be read directly from the doc/ folder in Manta’s GitHub

repository.
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